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1 Abstract

This project focuses on developing machine learning models for load forecasting
in the Swiss energy grid, using historical data on energy consumption, produc-
tion, and cross-border exchanges. The datasets include detailed information on
total energy consumed and produced in the Swiss control block, grid feed-ins,
net outflows, and energy trades with neighboring countries (Germany, France,
Austria, and Italy). By leveraging this data along with weather and seasonal fac-
tors, the project aims to improve the accuracy of short-term and long-term load
forecasts using advanced machine learning techniques such as LSTM, Transform-
ers, and Gradient Boosting, while comparing their performance with traditional
models.

Figure 1: Load and influence

Figure 2: Plotted Energy Production visuals (Python3)



The goal of which is to combine Machine Learning, Data Structures, and
Physics to predict real-life energy trends.

Figure 3: Endgoal

2 Objectives

The primary objectives are:

1. Visualize the Data

2. Develop a Medium Term Forecasting Model (Predicting Total Amount of
Energy Consumed per day/week)

3. Setting a Baseline Model and model evaluation Metric

4. Evaluate the results

5. Discussing challenges and conclusions



3 Visualisation

3.1 Variable to Predict

The target variable I’m trying to predict is the weekly energy load, specifically
Total Energy Production. The original data is recorded at 15-minute in-
tervals, and I aggregate it to weekly values using a 7-day window (Monday to
Sunday), following EU forecasting standards. According to Swissgrid, this vari-
able represents the total energy produced in the control block Switzerland, based
on aggregated feed-in sequences reported by distribution network operators. It
includes only production plants equipped with load profile meters.

l

Figure 4: Total Swiss Energy Consumption(2024)

Figure 5: 1-week Forecasting example(ARIMA model)



3.2 Related Variables in the dataset

Figure 6: Total energy production over time

Figure 7: Electricity fed into the grid

Figure 8: Net outflow of energy from the grid



Figure 9: Activation of positive tertiary control reserves

4 Time Series Analysis

4.1 Data Cleaning

will be added in: for now: converted everything to numeric, replaced errors with
NaN, removed NaN rows

4.2 Mathematical basics

4.2.1 Stationarity

Stationarity refers to the behavioral consistency of the time series. Mathemat-
ically, this means that the mean and covariance stay invariant regardless of the
time shift.

Strict stationarity means that the mean, variance, and covariance are con-
stant. Weak stationarity means that the mean, variance is constant, and the
covariance function γ(s, t) depends only on t - s, as in any two values depends
only on the time difference between them, not on the actual time at which they
occur. [4]



Figure 10: Stationary and non-stationary time series, Bauer 2021 [1]

4.2.2 White Noise

A stochastic process {Yt} is called white noise if all its elements are not corre-
lated, with mean E(Yt) = 0 and constant variance Var(Yt) = σ2 [4].

The standard deviation, which reflects the dispersion of values around the
mean, is further explained in [18].

σ =

√√√√ 1

n

n∑
i=1

(xi − µ)2

Figure 11: White noise using an np.random fct

As explained in Wikipedia [18], white noise is a stochastic process and does
not have a deterministic function.



4.2.3 Random Walk

A time series {Yt} is called a random walk if it satisfies the relation

Yt = Yt−1 + εt,

where εt is white noise. [4]

4.3 Initial data analysis

4.3.1 Mean

The mean, or expected value, of a time series quantifies its average level over
time. Its formula is given by:

µ =
1

n

n∑
i=1

xi

Where xi are the observed values and n is the number of observations [2].

Figure 12: Evolution of Mean Over Time — 2024

In this case, the mean energy consumption shows a decreasing trend from
February to September 2024, followed by a gradual increase into October. This
might be due to seasonal changes (for example, warmer months might require
less energy consumption than colder ones).

4.3.2 Variance

The variance measures the dispersion or spread of the data around the mean.
Its formula is given by:

σ2 =
1

n

n∑
i=1

(xi − µ)2



Where µ is the mean and σ2 is the variance [3].

Figure 13: Evolution of Variance Over Time — Total Energy Consumption 2024

Observation: The variance fluctuates significantly over time.

4.3.3 Transformation

4.3.4 Moving Sum (Window)

The moving sumcalculate the sum of a fixed number of consecutive values (a
”window”) in a dataset. The Moving Sum formula is calculated by:

St =

n−1∑
i=0

xt−i

In this case, To reduce noise and reveal trends, we will be using a 1 week window.

Figure 14: Weekly Sum



4.3.5 Moving Average

Averaging reduces variance, and introduces correlation in Yt [4]. A Simple
Moving Average is calculated by the formula:

MAt =
1

n

n−1∑
i=0

xt−i

4.3.6 Outliers & Data Cleaning

An outlier is an observation that causes surprise relative to the rest of the data.
It may be isolated or successive [4].

Figure 15: Outlier example in 2024 Consumption Graph

In the case for outliers, I will replace them with the value of the average in
the Moving Average Window.

4.3.7 Trends

Trend is a pattern in data that shows the movement of a series to relatively
higher or lower values over a long period of time [9]. Trends can be linear,
quadratic, periodic, or more complex [4].

Figure 16: Trend Evolution in 2024 Consumption Graph



4.3.8 Seasonality

A repeating pattern that occurs at fixed and regular intervals (e.g. daily, weekly,
yearly) [4]. Seasonality is a predictable cyclical pattern, whereas trends are a
long-term change in data (increase/decrease).

Figure 17: Weekly Seasonality, Month of March 2022

4.4 Differencing

4.4.1 Motivation

Differencing is a simple approach to removing trends. No need to estimate pa-
rameters. [4].

4.4.2 Differencing types

Differecing can be of first-order or higher-order [4]

4.4.3 First-order difference

The first order difference is defined as [4]:

∆Yt = Yt − Yt−1



Figure 19: Mean Over Time after Differencing

Figure 18: First Order Difference Weekly, 2024

Observation: The resulting time series does not look much different.

4.4.4 Higher-order difference

If one round of differencing is not sufficient to achieve stationarity, a higher-order
difference can be applied, the second-order difference is [4]:

∆2Yt = ∆(∆Yt) = ∆(Yt − Yt−1)

= ∆Yt −∆Yt−1 = Yt − 2Yt−1 + Yt−2

First-order differencing reduces a random walk to stationarity. In practice,
we difference until plots of the differenced data appear stationary; often k= 1,2
suffices [4].



Figure 20: Second Order Difference Weekly, 2024

4.4.5 Seasonal differencing

It’s simply (Yt - Yt - s), with s being the seasonality.

4.5 ACF and PACF

4.5.1 Motivation

Autocorrelation and partial autocorrelation functions are used to understand the
dependence structure of a time series. They help identify appropriate models
[4].

4.5.2 Correlogram

The covariance function for equally spaced data y1, . . . , yn is defined as:

ch =
1

n− h− 1

n−h∑
i=1

(yi − ȳ)(yi+h − ȳ), h = 0, 1, . . . , n− 2,

where ȳ is the sample mean. The correlogram (ACF) is a graph of ρ̂h = ch
c0

against lag h [4].



1

Figure 21: AutoCorrelation Function 2024 - Total Energy Consumption

4.5.3 Partial correlogram

The PACF is interpreted in a similar way to the ACF, but it reveals the **di-
rect** relationship between an observation and its lagged values, controlling for
the values in between. Let Y0, . . . , Yh be successive observations. The partial au-
tocorrelation function (PACF) at lag h measures the correlation between Yt and
Yt−h after removing the linear influence of intermediate lags Yt−1, . . . , Yt−h+1.

ρ̃1 = corr(Y1, Y0)

Figure 22: PACF computed using the Yule-Walker method



Figure 23: PACF generated using Darts

4.5.4 Testing for stationarity

To build reliable model, we need to check whether the data is stationary. One
way to test this is to decompose the time series Yt into three components:

Yt = ξt + ηt + εt

[4]
Where:

• ξt is the deterministic trend, as in a fixed, predictable pattern over time

• ηt is a supposed random walk,

• εt is noise

Types of stationarity:

• Level stationarity: If σ2
u = 0 and ξt = 0, then Yt is stationary around a

constant mean.

• Trend stationarity: If σ2
u = 0 and ξt = βt, then Yt becomes stationary

after removing the trend.

KPSS Test: The KPSS test is used to test the null hypothesis that a time
series is stationary. It does this by estimating the test statistic:

C(l) =
1

σ2(l)

n∑
t=1

S2
t , where St =

t∑
j=1

ej

Here, e1, . . . , en are the residuals from regressing Yt on a constant or a linear
trend (depending on whether testing for level or trend stationarity), and σ2(l) is
a long-run variance estimate using a truncation lag l. [4] The test is interpreted
as follows:

• If the test statistic is small (below the critical value), we do not reject
the null hypothesis: the series is stationary.



• If the test statistic is large (above the critical value), we reject the null
hypothesis: the series likely contains a unit root and is non-stationary.

Figure 24: KPSS result for differenced data

In this case, the KPSS test returns True for it is stationnary. This means
that our time series is indeed stationnary.

However, running the ADF test returns false for stationnarity. This conflict-
ing evidence will lead me to not rule out ARIMAs (for the time being).

Figure 25: ADF test

4.5.5 Testing for white noise

There are many methods to test for white noise. One of which, documented in
the Time Series Analysis book [4], is the Ljung–Box.

For a time series y1, . . . , yn, the Ljung–Box test statistic is:

Qm = n(n+ 2)

m∑
h=1

ρ̂2h
n− h

Where: - ρ̂h is the autocorrelation of the sample at lag h - n is the length
of the series - m is the maximum lag to include in the test [4]

We shall use the calculated autocovariances to create the Ljung-Box function
using the formula above. The ACFs were calculated using biased covariances.



Figure 26: Ljung-Box Q values

Chi-squared distribution. Under the null hypothesis that the series is white
noise, the Ljung–Box statistic Qm follows a Chi-squared distribution with m
degrees of freedom:

Qm ∼ χ2
m

The Chi-squared distribution is a continuous probability distribution. Its
formula is the following for the squares of k independent standard normal vari-
ables:

χ2
k = Z2

1 + Z2
2 + · · ·+ Z2

k , where Zi ∼ N (0, 1)

Its probability density function is given by:

f(x; k) =
1

2k/2Γ(k/2)
x(k/2)−1e−x/2, x > 0

where Γ is the gamma function, as in the non-integer and integer factorial
calculator. The distribution is positively skewed, and its shape depends on the
degrees of freedom k.



Figure 27: Enter Caption

In the Ljung–Box test, if the observed Qm is greater than the critical value
from the χ2

m distribution at a given significance level (e.g., 5%), we reject the
null hypothesis and conclude that the time series is not white noise.

Then, the p-value is:

p-value = P (χ2
m ≥ Qm) = 1− F (Qm)

Where:
F (Qm) is the distribution function of the Chi-squared distribution.

Figure 28: Ljung-Box p values by lag



Figure 29: Ljung-Box Q values

4.5.6 Checking normality using QQ plots

We often need to compare data y1, . . . , yn with a given distribution F , usually
the normal distribution (for example, to check if the standardized residuals are
N (0, 1)).

A quantile-quantile (Q–Q) plot is a graph of the ordered values of the yj :

y(1) ≤ y(2) ≤ · · · ≤ y(n)

against theoretical quantiles of F , given by xi = F−1
(

i
n+1

)
: we plot pairs

(x1, y(1)), (x2, y(2)), . . . , (xn, y(n))

It is best if the plot is square and if it includes confidence levels (often 95%).
Properties:

• perfect linearity shows perfect fit of F to the data, while strong curvature
suggests poor fit;

• outliers show as extreme values lying well off the line of the other data;

• for standard normal Q–Q plots we use xi = Φ−1
(

i
n+1

)
, where Φ is the

N (0, 1) distribution function.



Figure 30: Q-Q Plot initial data

Standardization The graph is too close together, to have a clearere view ,
we must standarize the data before generating the Q–Q plot. we do so using:

zi =
xi − x̄

s

where x̄ and s are the sample mean and standard deviation, respectively.



Figure 31: Q-Q Plot vs Normal

4.6 Periodogram

4.6.1 Motivation

Many series have cyclic structure (e.g. sunspots, CO2 data,...), but we may
not know what the cycles are in advance of looking at the data. The peri-
odogram is a summary description based on representing the observed series as
a superposition of sine and cosine waves of various frequencies. [4]

Check si il y a plusieurs fréquences, lequels, c’est quoi leurs amplitudes, check
residual stat

4.6.2 Discrete Fourier transform

We can avoid the previous regression and use the discrete Fourier transform
(DFT) for frequency analysis of time series.

The discrete Fourier transform of a time series y1, . . . , yn is the complex-
valued series

d(ωj) =
1√
n

n∑
t=1

yte
−2πiωjt



d(ωj) =
1√
n

(
n∑

t=1

yt cos(2πωjt)− i

n∑
t=1

yt sin(2πωjt)

)

Figure 32: Signal decomposition using Fourier Transform (3Blue1Brown) [13]

We define the periodogram I(ωj) = |d(ωj)|2.
The periodogram is related to the scaled periodogram: I(ωj) =

n
4P (ωj).

4.6.3 Periodogram

(a) If y1, . . . , yn is an equally-spaced time series, its periodogram ordinate for
ω is defined as

I(ω) = |d(ωj)|2

this means that:

I(ω) =
1

n

( n∑
t=1

yt cos(2πωt)

)2

+

(
n∑

t=1

yt sin(2πωt)

)2
 , 0 < ω ≤ 1

2

Our plot for the linear periodogram:



Figure 33: Linear Periodogram of original weekly series

4.6.4 Spectral Analysis— Power Spectrum

Figure 34: Decomposed Periodogram showing High Signals of Differenced Daily
Series

Figure 35: Spectral Reconstructed Series from High Frequencies(Spectral)



Figure 36: Reconstructed Frequencies Series for Daily values data

This visual was created from a previous project version. Added for visual
appreciation.

4.6.5 Cumulative periodogram

(c) The cumulative periodogram

Cr =

∑r
j=1 I(ωj)∑m
l=1 I(ωl)

, r = 1, . . . ,m

is a plot of C1, . . . , Cm against the frequencies ωj for j = 1, . . . ,m. [4]

According to Davidson, Gaussian and non-Gaussian white noise has a flat
spectrum [4]

Figure 37: Cumulative Periodogram vs flat spectrum Line

4.6.6 Interpretation/Is this brownian noise

In the figure, the cumulative periodogram does not follow the red line (which
represents white noise). This means, the frequencies in the time series are not
evenly spread out. My weekly time series is then not white noise.



Spectral analysis of variance

Might be added if time allows

4.7 Smoothing

Smoothing data set is to create an approximating function that attempts to
capture important patterns in the data, while leaving out noise or other fine-
scale structures. [17]

Figure 38: Smoothing Example - COVID Deaths 2019 (statisticsbyjim.com) [8]

4.7.1 Motivation

According to Boris’s book, the underlying model is

Yt = µ(t) + Zt,

[4] where µ(t) is smooth function of t and {Zt} is stationary. Among other
things, smoothing can identify trends and seasonality. Differencing can remove
trend to give stationary series. But differencing does not allow us to visualise
the trend. [4]

We can implement smoothing to examine/estimate the trend, for example
using:

• moving average (simple, related to differencing);

• polynomial (simple, doesn’t work very well);

• local polynomial (simple, easy to robustify);

• STL decomposition (robust fitting of local polynomial, with seasonal ef-
fects). [4]



We will see later that using differencing results in large uncertainties in
predictions. Intuitively, this is because differencing can remove very random
trends which must be taken into account for later predictions of Yt+h. If we can
estimate the trend µ(t) accurately and predict it with low uncertainty, we can
obtain better forecasts than when using differencing. [4]

4.7.2 Moving averages

Simple Moving Average

Moving Averages is one of the simplest smoothing methods to implement, it
essentially computes the local average function of a window size = n.

Simple Moving Average formula is given by the formula:

SMAt =
1

N

N−1∑
i=0

yt−i

[16]

Figure 39: Smoothed 7 MA Energy Consumption Data vs Original

Weighted Moving average

Weighted Moving average is given by the formula :

st =

p∑
j=−p

wjyt+j , t = p+ 1, . . . , n− p, p ∈ N,

[4]
Classical approaches to smoothing aim to reduce short-term fluctuations in

time series data. Given a sequence of observations y1, . . . , yn, one common
method is to replace each value yt with the average of its immediate neighbors:

y′t =
1

3
(yt−1 + yt + yt+1)

More generally, this method constructs a moving average of order 2p + 1,
using weights wj that satisfy



p∑
j=−p

wj = 1, with usually wj > 0 and wj = w−j .

This is an example of a linear filter, where each smoothed value is a weighted
sum of surrounding observations.

Figure 40: Smoothed Energy Consumption Data using 3-Point Weighted MA
vs Original

[4]

Fixing Weights

Fixes are possible near the ends, but usually p ≪ n, so the details of the fixes
are unimportant. Choose weights by:

• iterating simple (equally-weighted) smoothers;

• choosing higher order to remove (or at least decrease) seasonality, for
example taking p = 6, w6 = w−6 = 1/24 and all other wj = 1/12;

• taking smaller order to highlight seasonality. [4]

xn

Figure 41: Higher Order Smoother, weights 1/24 for w1, w2p+1, 1/12 for middle
weights



4.7.3 Local polynomial regression

A gloabl fit polynomial of degree k to the data is given by the formula

Yt = p(t) + εt = β0 + β1t+ · · ·+ βkt
k + Zt,

where {Zt} is stationary series. Choose parameters. [4] β0, . . . , βk to minimise
the sum of squares

n∑
t=1

{yt − p(t)}2 =

n∑
t=1

[
yt −

(
β0 + β1t+ · · ·+ βkt

k
)]2

,

[4]
Instead of fitting one global curve , we fit small polynomial curves locally,

near each time point. We give more weight to nearby points and less weight to
far-away ones using a ”Kernel function” that assigns these weights, where we
pick a time point, and assign weights to nearby observations using the kernel
function, and repeat for the next time point.

Automatic choice of h (or equivalent degrees of freedom ≡ degree of polyno-
mial) for kernel tends to be too small, owing to autocorrelation of time series.
[4]

Figure 42: Local polynomial regression using statsmodels (p=0.25)



Figure 43: Local polynomial regression using statsmodels (p=0.25)

4.7.4 STL decomposition

An approach to removing overall trend and seasonal components, robust and
(in principle) capable of handling missing data. [4]

The underlying model is:

Yt = U(t) + S(t) + Zt, {Zt} stationary,

where U(t) is the trend component and S(t) is the seasonal variation. [4]

(a) Original data [10] (b) STL decomposition [10]

Figure 44: Example STL decomposition: (geeksforgeeks) [10]

Method: STL decomposition is based on the local polynomial regression.
The seasonal component is found by smoothing the seasonal sub-series. This
seasonal component is then removed from the initial data, and the remainder is
smoothed to estimate the trend component. [4]

STL can fit either a single seasonal component or a slowly-varying one. There
are several parameters to be chosen when using STL. The default values in the
stl function are not always appropriate. [4]



Figure 45: STL extracting trend seasonality

4.7.5 Additive vs Multiplicative Extraction Models

According to Mulius’ article [12], in an additive model, the observed value is
the sum of trend, seasonality, and residual components:

Y (t) = Trend(t) + Seasonality(t) + Residual(t).

This works best when the magnitude of seasonal fluctuations or residuals re-
mains constant over time, regardless of the trend’s growth or decline.

A multiplicative model represents the observed value as the product of its
components:

Y (t) = Trend(t)× Seasonality(t)× Residual(t).

This is suitable when seasonal or residual effects scale with the trend [12].

Figure 46: decomposition additive vs multiplicative (Nachi Keta) [11]



5 Time Series Interpretation

The goal of all this work is to analyze the weekly energy consumption data and
understand its behavior.

Stationarity

To check if the data was stable over time, I used two tests: KPSS and ADF.
KPSS said the data is already stationary, so I didn’t apply differencing and kept
d = 0 for ARIMA models. I did try differencing but it didn’t make a difference.

ACF and PACF, Periodogram

The ACF and PACF plots helped identify the structure of the series. PACF
dropped after lag 1, and ACF slowly faded, which suggested that an AR(1)
model could work well (but maybe not for long term forecasting). I tested AR
models from order 1 to 5. AIC and BIC scores were lowest for AR(1), meaning
it was the best among those. This was also the case for MAPE scores.

The cumulative periodogram showed that my time series is not white noise.

Seasonality

STL decomposition didn’t show clear seasonality. But the periodogram showed
a strong signal every 52 weeks. So seasonal models like SARIMA with s = 52
make sense.

From my current undertanding, the series is stationary and has a repeating
pattern every 52 weeks. AR(1) is a solid baseline, while an ARMA(5,2) might
be better for longer term forecasting, and a SARIMAX should be the best model
when including external data like temperature. I’ll be testing them soon.



6 Models

6.1 Baseline Model

The baseline model employed is the Näıve Drift model. Unlike the standard
näıve model (Yt+1 = Yt), which assumes no change from the last observed
value, the drift model linearly extrapolates future values using the trend ob-
served in the training window. Specifically, it forecasts the value at time T + h
as:

ŷT+h = yT + h · yT − y1
T − 1

where yT is the last observed value in the training set, y1 is the first, T is the
length of the training window, and h is the forecast horizon. This model serves
as a simple benchmark for evaluating the performance of more sophisticated
forecasting methods.

Figure 47: Baseline Naive model, 1 week daily forecast

6.2 AR

6.2.1 Definition

The first-order autoregressive, AR(1), process is a stationary process {Yt} sat-
isfying

Yt = αYt−1 + εt, t ∈ Z, (1)

where α is the autoregressive parameter and {εt} is white noise. The AR(1)
process with mean µ is defined by

Yt − µ = α(Yt−1 − µ) + εt, t ∈ Z. (2)

In theoretical discussion, we use (1), but in practice we must usually use (2)
and estimate the mean µ.[4]



6.2.2 Plot

Figure 48: AR(1,0,0) model, 1 week daily forecast

6.2.3 Likelihood ratio test

6.2.4 Model comparison

According to Davison’s book [4], a model fA(y) is nested within a model fB(y)
if B may be reduced to A by restricting certain of the parameters.

• for example, a model Y1, . . . , Yn
iid∼ N (µ, σ2) is nested within the model

that the observations are from a Gaussian AR(1) process, because the first
is obtained from the second by setting α = 0.

Obviously the maximised log likelihoods satisfy ℓB ≥ ℓA, because the more
comprehensive model B contains the simpler model A.

The likelihood ratio statistic for comparing A with B is

W = 2(ℓB − ℓA).

If the model is regular, the simpler model is true, and B has q more param-
eters than A, then

W
·∼ χ2

q.

Figure 49: Likelihood-Ratio Test results for AR

6.2.5 Residuals

Standardized residuals are defined as

ẽt =
(yt − µt)− α(yt−1 − µt−1)

σ
, t = 2, . . . , n,



where µt = µ+ δI(t > 38).
The residuals should be approximately (Gaussian) white noise.
In the next slide we plot some diagnostics based on ẽ2, . . . , ẽn:

• original data with fitted mean,

Figure 50: original data with fitted mean, AR model

• time series of residuals,

Figure 51: Residuals over Time(AR1)

• ACF,



Figure 52: ACF of Residuals(AR(1))

• Ljung–Box test,

Figure 53: Ljung–Box test

• cumulative periodogram,



Figure 54: cumulative periodogram

• normal Q–Q plot.

Figure 55: normal Q–Q plot



6.3 ARMA

Figure 56: Recursive ARMA over 4-week horizon

6.3.1 ACF & PACF

According to the Time Series Analyis book, To summarise: for causal and
invertible ARMA models the ACF and PACF have the following properties:

AR(p) MA(q) ARMA(p,q)
ACF Tails off Cuts off after lag q Tails off
PACF Cuts off after lag p Tails off Tails off

This gives an approach to identifying AR and MA models based on the ACF
and PACF, and suggests how to choose p or q. [4]

6.3.2 Model comparison

6.3.3 Residuals

6.3.4 ARIMA

Figure 57: ARIMA 5 first attempt



Figure 58: ARIMA(1,1,1) Rolling Forecast

6.3.5 Box-Jenkings Method

6.3.6 Model identification

Choice of d:

• Examine a plot of the data for non-stationarity.

• If the data seem non-stationary, we difference successively until they ap-
pear stationary.

• Usually d = 1, 2 is enough!

Choice of p and q:

• Examine the ACF and PACF of the differenced data.

• Sharp cut-off in the ACF after q lags suggests using an MA(q) model.

• Sharp cut-off in the PACF after p lags suggests using an AR(p) model.

• No sharp cut-off suggests ARMA model, hopefully with p, q ≤ 2.

• No (or very slow) decline of ACF/PACF to zero suggests need to difference
further, or to think again.

• If in doubt, opt for a parsimonious model, with fewer parameters. [4]

In this case, I have chosen ARMA(1,1) for now with d = 0.

6.4 SARIMA

6.4.1 Definition

Many geophysical time series have seasonal components. For example,

• hourly temperatures have 24-hour and annual cycles,



• monthly temperatures have a 12-month cycle.

For seasonal components the period is fixed and known (unlike cyclic be-
haviour). It may be useful to use an s-fold difference operator I − Bs, for
example with s = 12 to remove the seasonal component from monthly temper-
atures.

The multiplicative seasonal autoregressive moving average model SARIMA(p, d, q)×
(P,D,Q)s is

ΦP (B
s)ϕ(B)(I −B)d(I −Bs)DYt = α+ΘQ(B

s)θ(B)εt,

where {εt} is Gaussian white noise. The ordinary autoregressive and moving
average components are represented by the operators ϕ(B) and θ(B), respec-
tively; the seasonal autoregressive and moving average components by ΦP (B

s)
and ΘQ(B

s), of orders P and Q; and the ordinary and seasonal difference com-
ponents by (I −B)d and (I −Bs)D of orders d and D.

Figure 59: SARIMA 5 first attempt

Figure 60: SARIMA(2,1,0), with 10-week non differenced seasonal component
Rolling Forecast



6.4.2 Modeling procedure

6.4.3 Residuals

6.5 SARIMAX

6.5.1 Exogeneous Variables

6.5.2 Weather Data

7 Evaluation

7.1 MAPE

7.1.1 Definition

The mean absolute percentage error (MAPE) is a metric used to evaluate the
accuracy of a forecasting model. It calculates the average of the absolute per-
centage errors between the predicted values and the actual values. Lower MAPE
values indicate more accurate forecasts.

The formula is:

MAPE =
100%

n

n∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣
where yt is the true value and ŷt is the predicted value at time t. [15]

7.1.2 MAPE comparison between models

Figure 61: MAPE comparison between models

Other figures will be added.

7.2 AIC/BIC

7.2.1 Definition

The Akaike information criterion (AIC) and the Bayesian information criterion
(BIC) are both used to compare the quality of different statistical models fitted
to the same data. They take into account how well a model fits the data and
how complex it is, penalizing models with more parameters.

The formulas are:



AIC = 2k − 2 ln(L̂) and BIC = ln(n)k − 2 ln(L̂)

where k number of estimated parameters, L maximum likelihood of the
model, and n number of observations

BIC penalizes model complexity more than AIC because the penalty term
ln(n) grows with the sample size, whereas AIC uses a constant penalty of 2
per parameter. This means BIC tends to prefer simpler models, especially with
larger datasets. [14]

7.3 AIC/BIC Comparison between models

Figure 62: AIC and BIC values for AR models of increasing order

Other comparisons will be added.

7.4 Testing on other data
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